“Comparative evolution of an archetypal adaptive radiation: Innovation and opportunity in Anolis lizards”

Posted on

Steven Poe, Adrián Nieto-Montes de Oca, Omar Torres-Carvajal, Kevin de Queiroz, Julián A. Velasco, Brad Truett, Levi N. Gray, Mason J. Ryan, Gunther Köhler, Fernando Ayala-Varela, and Ian Latella (June 2018)

Read the Article

The most comprehensive comparative analysis of anole lizards sheds new light on their status as an adaptive radiation

Anolis vanzolinii, from Ecuador.
(Credit: Steven Poe)

Abstract

Adaptive radiation is a widely recognized pattern of evolution wherein substantial phenotypic change accompanies rapid speciation. Adaptive radiation may be triggered by environmental opportunities resulting from dispersal to new areas or via the evolution of traits, called key innovations, that allow invasion of new niches. Species sampling is a known source of bias in many comparative analyses, yet classic adaptive radiations have not been studied comparatively with comprehensively sampled phylogenies. In this study we use unprecedented comprehensive phylogenetic sampling of Anolis lizard species to examine comparative evolution in this well-studied adaptive radiation. We compare adaptive radiation models within Anolis and in the Anolis clade and a potential sister lineage, the Corytophanidae. We find evidence for island (i.e., opportunity) effects and no evidence for trait (i.e., key innovation) effects causing accelerated body size evolution within Anolis. However, island effects are scale dependent: when Anolis and Corytophanidae are analyzed together, no island effect is evident. We find no evidence for an island effect on speciation rate, and tenuous evidence for greater speciation rate due to trait effects. These results suggest the need for precision in treatments of classic adaptive radiations such as Anolis, and further refinement of the concept of adaptive radiation.